Received: February 8, 1986; accepted: May 16, 1986

THERMAL DECOMPOSITION OF HYDRAZINIUM(2+) HEXAFLUOROZIRCONATE(IV) AND HEXAFLUOROHAFNATE(IV)

D. GANTAR and A. RAHTEN

Jozef Stefan Institute, Edvard Kardelj University, 61000 Ljubljana (Yugoslavia)

SUMMARY

A study of the thermal decomposition of $N_2H_6ZrF_6$ and $N_2H_6HfF_6$ showed that in the first step $N_2H_5ZrF_5$ and $N_2H_5HfF_5$ are formed. In the second step the former gives NH_4ZrF_5 as an intermediate, but an analogous hafnium complex cannot be obtained in a pure state. The end products of the decompositions are the corresponding tetrafluorides. The intermediates were isolated and characterized by chemical analysis, X-ray diffraction patterns and vibrational spectroscopy.

INTRODUCTION

Zirconium and hafnium give a wide range of complex fluorides in which fluorometalate anions of the types MF $_8^{4-}$, MF $_7^{3-}$, MF $_6^{2-}$ and MF $_5^{-}$ (M = Zr, Hf) are formed. Many are polymeric (e.g. ${\rm Zr}_2{\rm F}_{12}^{4-}$, ${\rm Zr}_2{\rm F}_{13}^{5-}$, ${\rm Zr}_2{\rm F}_{14}^{6-}$) [i]. Research work carried out on the fluorozirconates and fluorohafnates have involved studies of phase equilibria, thermal stabilities, infrared and Raman spectra, n.m.r. spectra, mass spectra and X-ray structural analysis.

The hydrazinium(2+) ion complexes $N_2H_6MF_6$ and $(N_2H_6)_5M_2F_{14}$ (M = Zr, Hf) were described in the sixties [2,3]. Their thermal decompositions have also been studied, but only the final products were identified [3,4]. On the basis of the weight loss, the feasible first step intermediates of decomposition of the $N_2H_6MF_6$ complexes (M = Zr, Hf) have been suggested to be $(NH_4)_2ZrF_6.2NH_4ZrF_5$ and $(NH_4)_2HfF_6.2NH_6HfF_5$, respectively [5].

The present study revealed that the thermal decomposition of $N_2H_6MF_6$ (M = Zr, Hf) occurred through new $N_2H_5^+$ complexes, $N_2H_5ZrF_5$ and $N_2H_5HfF_5$.

EXPERIMENTAL

 $N_2H_6ZrF_6$ and $N_2H_6HfF_6$ were prepared by methods published in refs. 2 and 3. Their purities were checked by chemical analysis and their vibrational spectra were recorded.

Chemical analyses are summarized below:

Found: N₂H₄, 13.4; Zr, 38.1; F, 47.6 Calcd.: N₂H₄, 13.4; Zr, 38.1; F, 47.6

Found: N₂H₄, 9.8; Hf, 54.6; F, 34.9 Calcd.: N₂H₄, 9.8; Hf, 54.7; F, 34.9

For thermal analysis a Mettler TA 1 Thermoanalyzer was used. In a typical run a 100 mg sample and in a macrothermogravimetric decomposition a 500 mg sample were used, and these were referenced against a 100 mg sample of \ll - ${\rm Al}_2{\rm O}_3$. The heating rate of the furnace was 1°C min⁻¹ and the decompositions were carried out in a dry argon atmosphere (flow rate 5 lh⁻¹). The DTG range was 10 mg min⁻¹ and the DTA range was 100 mg sample, the DTG range was 10 mg min⁻¹ and the DTA range was 200 μ V for a 500 mg sample.

The Raman spectra of the solids in Pyrex tubes were obtained using a Spex 1401 double monochromator. As exciting radiations the 514.5 nm line of an Ar^+ laser (Coherent Radiation) was used. The infrared spectra were recorded using a Perkin-Elmer spectrometer, with the solid pressed between CsBr windows. X-ray powder diffraction patterns were obtained by the Debye-Scherrer method on an ENRAF apparatus using graphite monochromated CuK_{∞} radiation. Powdered samples were sealed in 0.5 mm thin walled Pyrex capillaries. In chemical analysis, hydrazine, total fluorine ion, ammonium ion and metals were determined. Hydrazine was determined potentiometrically [6], total fluorine by a modified distillation method [7], ammonium by a Kjeldahl method [8] and metals gravimetrically [9].

RESULTS AND DISCUSSION

Thermal decompositions of $N_2H_6^{\ 2+}$ fluorometalates occur either in one step, e.g. $N_2H_6 {\rm FeF}_5$ [10], $N_2H_6 ({\rm AsF}_6)_2$ [11], or are more complex and occur in two or more steps through intermediates [12]. Thermal decomposition studies of $N_2H_6 {\rm MF}_6$ (M = Zr, Hf) showed that decomposition of $N_2H_6 {\rm ZrF}_6$ occurred in three steps [2] and $N_2H_6 {\rm HfF}_6$ in two [4]. Deductions about the composition of the intermediates solely on the basis of weight loss observed can lead to incorrect results, and therefore we repeated the thermal decomposition studies on $N_2H_6 {\rm MF}_6$ (M = Zr, Hf), and isolated and identified the intermediates obtained. Thermal decomposition of the $N_2H_6^{\ 2+}$ compounds is probably related to the N-F ···· H hydrogen bonds in their structures, and decompositions through either the $N_2H_5^+$ or the $N_2H_6^+$ compounds might be dependent upon the strength of these bonds. Therefore, the formation of $N_2H_5 {\rm MF}_5$ in the first step of the decomposition of $N_2H_6 {\rm MF}_6$ could be explained by proton transfer between the $N_2H_6^{\ 2+}$ ion and the fluoride ion, liberating gaseous HF and forming the $N_2H_5^+$ and ${\rm MF}_5^-$ ions (M = Zr, Hf).

$$N_2H_6MF_6 \longrightarrow N_2H_5MF_5 + HF$$

The decomposition of $N_2H_6ZrF_6$ begins at $50^{\circ}C$ (Fig. 1).

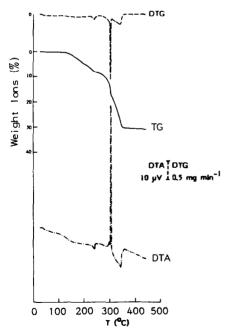


Fig. 1. TG, DTG and DTA curves of $N_2H_6ZrF_6$

The first step occurs endothermically with the DTA peak at 240°C and the DTG minimum at the same temperature. Up to 248°C the sample loses 8.4% of its weight and this corresponds to a loss of one mole of HF per mole of starting material (calcd. weight loss for formation of $N_2H_5ZrF_5$ is 8.36%). The next step between 248 and 305°C is strongly exothermic accompanied by a peak in the DTA curve and a minimum in the DTG curve at 302°C . Up to 305°C the sample loses a further 6.6% of its weight (calcd. weight loss for formation of NH_4ZrF_5 is 6.28%). In the last step, the decomposition is endothermic with a peak in the DTA curve and a minimum in the DTG curve at 342°C . Up to 440°C the cumulative weight loss is 29.7% which correlates well with the theoretical value (30.12%) for formation of ZrF_4 .

The thermal decomposition of $N_2H_6ZrF_6$ follows the equations:

$$N_2H_6ZrF_6 \longrightarrow N_2H_5ZrF_5 + HF$$
 (1)

$$N_2H_5ZrF_5 \longrightarrow NH_4ZrF_5 + 0.5N_2 + 0.5H_2$$
 (2)

$$NH_4ZrF_5 \longrightarrow ZrF_4 + NH_3 + HF$$
 (3)

The crystal structure of $N_2H_6ZrF_6$ is known [13] and the X-ray diffraction patterns of the hafnium analogue confirm that it is isomorphous with the

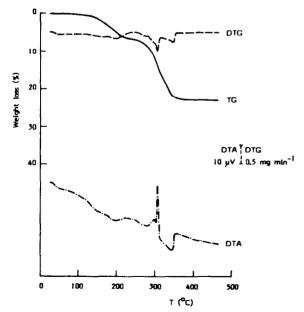


Fig. 2. TG, DTG and DTA curves of N2H6HfF6

former. It was expected that the decomposition of N $_2$ H $_6$ HfF $_6$ would occur in a similar fashion to the zirconium compound. Indeed, in the first step the intermediate N $_2$ H $_5$ HfF $_5$ was isolated, but that was decomposed directly to HfF $_4$.

The decomposition of $N_2H_6HfF_6$ (Fig. 2) starts as low as at 30°C. In the first step up to $213^{\circ}C$ the sample loses 6.1% of its weight and this is accompanied by an endothermic DTA peak and a minimum in the DTG curve at $195^{\circ}C$ (calcd. weight loss for formation of $N_2H_5HfF_5$ is 6.13%). Further decomposition is exothermic, with two DTA peaks at 300 and $305^{\circ}C$, and a DTG minimum at $305^{\circ}C$. At $312^{\circ}C$ we isolated the product but its chemical analysis showed that it contained both hydrazine and ammonium. Up to $465^{\circ}C$ the sample loses 23.3% of its initial weight, and that corresponds to the formation of HfF_4 (calcd. weight loss is 22.07%). Between 312 and $465^{\circ}C$ the decomposition is endothermic with a DTA peak at $340^{\circ}C$ and a DTG minimum at $342^{\circ}C$. Although the DTA and DTG curves indicated that the decomposition of $N_2H_5HfF_5$ probably occurred through an ammonium compound, it was not possible to isolate it in a pure state.

The thermal decomposition follows the equations:

$$N_2H_6HfF_6 \longrightarrow N_2H_5HfF_5 + HF$$
 (1)
 $N_2H_5HfF_5 \longrightarrow HfF_4 + NH_3 + 0.5H_2 + HF + 0.5N_2$ (2)

The intermediates, $N_2H_5ZrF_5$, NH_4ZrF_5 and $N_2H_5HfF_5$ were isolated in a macrogravimetric decomposition. Their chemical analysis is given in Table 1.

TABLE 1
Chemical analyses of intermediates

	c	alcd. (%)			Found (%)					
	N ₂ H ₄	NH ₄	М	F	N ₂ H ₄	NH ₄	М	F		
N ₂ H ₅ ZrF ₅	14.62		41.60	43,32	14.4		41.6	43.4		
NH ₄ ZrF ₅		8.83	44.66	46,51		8.5				
$N_2H_5HfF_5$	10.45		58.23	31.99	10.2		57.9	32.0		

X-ray diffraction patterns of $N_2H_5ZrF_5$ and $N_2H_5HfF_5$ are given in Table 2. D-spacings and intensities clearly show that the compounds are isomorphous.

TABLE 2 $\label{eq:X-ray} \text{X--ray diffraction patterns of $N_2H_5ZrF_5$ and $N_2H_5HfF_5$ }$

N ₂ H ₅ ^Z	rF ₅	N ₂ H ₅ H	⊣fF ₅	
d	I	d	I	
12.12	vs	12.33	vs	
17.35	s	17.55	s	
20.43	W	20.62	W	
22.23	w	22.29	w	
24.65	s	24.54	S	
27.31	s	27.46	s	
29.91	s	30.10	s	
30.82	m	31.04	m	
32.57	m	32.76	m	
37.25	m	37.08	m	
41.43	m	41.62	m	
42.82	m	43.05	m	
45.12	m	45.42	m	
47.76	W	46.81	w	
48.82	W	48.12	w	
49.81	W	48.97	w	
50.37	m	49.97	m	

The vibrational spectra of $N_2H_6ZrF_6$ and $N_2H_5ZrF_5$, and the published infrared spectrum of NH_4ZrF_5 [14] are given in Table 3. The cationic part of the vibrational spectra is assigned to $N_2H_6^{\ 2+}$ and $N_2H_5^{\ +}$, respectively. The criterion for distinguishing $N_2H_6^{\ 2+}$ and $N_2H_5^{\ +}$ is the activity of the N-N stretching vibration which appears in $N_2H_6^{\ 2+}$ compounds only in the Raman (in $N_2H_6ZrF_6$ at 1042 cm⁻¹) and in $N_2H_5^+$ compounds both in the Raman and the i.r. (in $N_2H_5ZrF_5$ at 970 cm⁻¹ in the i.r., and at 978 cm⁻¹ in the Raman), and the observed bands are in accordance with published data [15] .

The bands in the Raman and the absorptions in the i.r. between 1000 and 1700 cm $^{-1}$ are attributed to deformation and rocking vibrations of the N-H bonds. In the anionic part of the vibrational spectra a large number of bands are observed. Those in the range 380-560 cm $^{-1}$ are assigned to metal-fluorine stretching frequencies, and those in the range 200-350 cm $^{-1}$ to bending vibrations of the metal-fluorine bond.

N ₂ H ₆ ZrF ₆		N ₂ H ₅ ZrF	5	NH ₄ ZrF ₅ [14]	Assignment
IR	R	IR	R	IR	
	250(16) 300(10) 328(16)	304 w	188(35) 240(27) 312(15)	256 br,s 295 br,s	(Zr-F) _b
347 m	364(16) 378(30)	362 sh	368(33)	385 m)
396 m	396(28)	382 s 404 sh 412 sh	380(29)	787 m	(Zr-F) _s
462 br,s	472(22)	451 s	470(25)	476 br,s 495 br,s	
559 m	540(13)	528 s	538(100)	521 sh	J
	1042(100)	970 s	980(69)) (N-N) _s
1067 s 1131 vs 1298 w	1100(10) 1140(17)	1114 vs 1235 w 1295 w	1130(32)		(NH ₃) _r
1324 w	1316(21)			1422	(NH ₄ ⁺)
1538 vs 1555 sh 1588 vs	1544(B.7)	1542 s 1558 sh 1607 s	1564(18) 1612(18)	1766	$(NH_{3}^{+})_{d}$
1622 s	1624(20)	1630 s	1656(18)		(NH+)
	1672(8.7)		1676(18)	1709 br 1992 br 2857 sh	(NH ₄)

The crystal structure of $N_2H_6ZrF_6$ showed that the zirconium atoms exhibited eightfold coordination, the zirconium polyhedron having C_s symmetry [13]. The coordination around zirconium in the ZrF_5 anion is not clear, however, and for $NH_4ZrF_5.H_2O$ it was speculated that coordination entities probably occupied positions of low site-symmetry. For those compounds in which the zirconium-fluorine polyhedra have low site-symmetries many modes are expected to be i.r. and Raman active, and as the Zr-F bond lengths do not vary greatly the related absorption bands occur close together. This is observed to be

so in the infrared spectra of various ammonium fluorozirconates [14] , as well as in the spectra of $\rm N_2H_6ZrF_6$ and $\rm N_2H_5ZrF_5$.

For the second step intermediate NH_4ZrF_5 , only the infrared spectrum can be obtained, and is in agreement with the infrared spectrum published in ref. 14.

For $N_2H_6HfF_6$ and $N_2H_5HfF_5$, the vibrational spectra are similar to the corresponding zirconium complexes. The absorption frequencies and the assignment are given in Table 4.

TABLE 4 $\label{eq:Vibrational Spectra} \mbox{Vibrational spectra (cm$^{-1}$) of $N_2H_6HfF_6$ and $N_2H_5HfF_5$}$

N2H6HfF6		N ₂ H ₅ HfF ₅		Assignment	
IR .	R	IR	R		
			1 94 (49) 230(45)		
53 sh	268(19) 324(25) 370(20)	343 sh 365 sh	308(15) 362(29)	(Hf-F) _b	
90 m 60 br,s	394(28) 482(18)	378 s 452 m 492 s	400(33) 476(20)	Hf-F) _s	
65 m	540(16) 590(26)	472 3	544(100)		
5 s	1042(100)	970 s	982(76)	(N-N) _s	
1 vs 4 w 4 sh	1100(9) 1140(15) 1320(22)	1117 vs 1238 w 1291 w	1130(31)	(NH ₃) _r	
56 s 58 sh 36 s	1544(14)	1543 s 1557 sh	1528(24) 1560(24)) (NH ⁺ ₃) _d	
22 s	1624(27)	1605 s 1632 s	1620(29))	
	1672(10)		1660(26)	$(NH_2^{\dagger})_{d}$	

ACKNOWLEDGEMENT

We kindly thank Miss B. Sedej for chemical analysis. The work was financed through the Research Community of Slovenia.

REFERENCES

- 1 R.J. Clark, D.C. Brandley and P. Thornton, 'The Chemistry of Titanium, Zirconium and Hafnium,' Pergamon Press, Oxford, Vol. 19, 1973.
- 2 J. Slivnik, A. Šmalc, B. Sedej and M. Vilhar, Bull. Slov. Chem. Soc., 11 (1964) 53.
- 3. J. Slivnik, B. Jerković and B. Sedej, Monatsh. Chem., 97 (1966) 820.
- 4. M. Vilhar and J. Šiftar, Paper presented at the 2nd European Symposium on Fluorine Chemistry, Göttingen, 1968.
- 5 B. Volavšek, D. Dobčnik and J. Slivnik, J. inorg. nucl. Chem., 34 (1972) 2483.
- 6 W.M. McBride, R.A. Henry and S. Skolnik, Anal. Chem., 23 (1951) 890.
- 7 G. Pietzka and P. Ehrlich, Angew. Chem., 65 (1953) 131.
- 8 A.I. Vogel, 'A Textbook of Quantitative Inorganic Analysis,' Longmans, London, 1961.
- 9 I.M. Kolthoff, E.B. Sandell, 'Textbook of Quantitative Inorganic Analysis,' MacMillan, London, 1950.
- 10 J. Slivnik, J. Maček, A. Rahten and B. Sedej, Thermochim. Acta, 39 (1980) 21.
- 11 B. Friec, D. Gantar and J.H. Holloway, Bull. Slov. Chem. Soc., 28 (1981) 113.
- 12 D. Gantar and A. Rahten, Thermochim. Acta, 91 (1985) 337.
- 13 B. Kojić-Prodić, S. Šćavničar and B. Matković, Acta Crystallogr., B27 (1971)638.
- 14 P.W. Smith, R. Stoessiger and A.G. Turnbuil, J. Chem. Soc., (A), (1968) 3013.
- 15 S. Milićev and J. Maček, Spectrochim. Acta, A 41 (1985) 651.